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SUMMARY

A model for preparative scale gas chromatography is derived, first by choosing
only a few of the many phenomena involved in such a process, then by using a new
description of the process itself as well as a better mathematical method to account
for it. The new description of the phenomena makes use of discontinuities of the solute
mole fraction which implies that discontinuous as well as continuous equations can be
written. Use of the method of characteristics for the continuous equations allows the
two types of solution to be combined into a very general description of the movement
of solutes down a chromatographic columin. Examples of application are given for the
cases of one and two solutes.

INTRODUCTION

Much theoretical work has been published about chromatography. Most of the
literature dealt with phenomena involved in a chromatographic process whereas a
few theories gave a complete model for such a process. Only the latter will be con-
sidered here, and a short review of them is given in Table I. As shown by Table I, the
theories of gas chromatography (GC) appeared later because GC itself is a relatively
young technique. Before presentmg a new model for GC at finite concentration, it is
necessary to survey the previous ones so that the essential features of the model can be
pointed out.

The first theories of chromatography, which were derived for liquid chromato-

TABLE I

THE VARIOUS GENERAL THIEORIES OF CHROMATOGRAPHY

Type Year Author Main veference
Liquid; finite conen, ' 19408 © WILSON; DEVAULT 1,2

Ion exchange; finitc concn, 19408 GLULCKAUF 3

Gas; analytlcal 1950% GIDDINGS 4

Gas; finite concen, 1955 BOSANQUET AND Monc.m: 5

Liquid ; finite concn, . 1960s RACHINSKII 6

Ion exchange; finite concn. 1970 KLeiN AND HELFFERICH; TONDEUR 7, 8 .

Gas; finite concn, - 1970  GUIOCHON AND JAcOB 9 ‘
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20 L. JACOB, G. GUIOCHON

graphy, are based on partial differential equations?:2, These theories, which presented
a complete set of hypotheses allowing the basic equations to be derived, accounted for
the finite concentration and partly for the occurrence of very steep slopes on one side
of a peak?2 Further steps towards the greater use of mathematics were made in the
case of liquid chromatography by RAcHINSKII®, who introduced better mathematical
methods. However, GC was discovered, and made use of much smaller amounts of
solute so that it was soon used under analytical conditions at almost infinite dilution.
It is therefore not surprising that the models devised at that time were statistical4
and no longer used partial derivatives. However, the theories devised by GIDDINGS?
in the 19508 were still based on liquid dynamics. Immediately afterwards, attempts
to deal with finite concentrations in GC were made for example by BOSANQUET AND
MorGANS, However, they were very limited in scope. In fact, the methods used in
these models were all very similar to those used by DEVAULT?2, and all the papers in
the literature referred to his work. However, if further steps were to be taken, it was
obvious that something had to be added. This could be done using more suitable
mathematical methods for both liquid and gas chromatography. It could also mean
-adding new phenomena so that the models would be closer to reality. These features
can be found in the two latest models to be published, that of TONDEUR® and that of
GUIOCHON AND JAcor?. This last model is presented here, first the phenomena, then
the mathematical method, and finally the application of the model.

THE MAIN PHENOMENA

When one speaks of preparative scale chromatography, one does not always
indicate exactly which model has been chosen or refer to it correctly. A clear basis
will be given here for the model presented, so that an easy comparison can be made
with others. The main phenomena involved are shown in Table II. The first group
of phenomena can be neglected for various reasons® of which the essential ones are
the. followmg '

TABLE II

THE PHENOMENA THAT INTERVENE IN FINITE CONCENTRATION GAS CHROMATOGRAPHY

Included in model Excluded from model
Isotherm : Local pressure
Temperature
Molar volume variation Diffusion
Flow
Discontinuities Column

The local pressure influences the flow of the mobile phase, but if this factor was
taken into account, the resulting equations would be far too complicated. It is indeed
a very important phenomenon and should actually be dealt with at finite concentra-
tion to be able to obtain physical data for the solutes. However, our present purpose
is to achieve a fairly general model and. if the pressure is included this aim will no
longer be possible, Whereas results in good agreement with the experimental ones are
obtained with models having this feature. Besides, if the theories of GC are considered
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in detail, one realizes that very few of them fully include the effect of pressure. For
example, in the statistical theory of GIDDINGS?, the influence of decompression on the
mobile phase velocity is not included although it modifies the statistical distribution
of the solute.

Temperature and diffusion can be con31dered as minor phenomena as far as
finite concentrations are concerned, as will be seen later. IF 1nally, only a piston-flow
or a mono-dimensional column will be considered.

- Thus there remain only the three basic characteristic features of our model of
chromatography at high concentration: the solubility isotherm, the differences in the
molar volumes of the solute, and the occurrence of concentration discontinuities.

The solubility isotherm relates the concentration between the two phases of a
solute at equilibrium between the mobile and the stationary phases. When the mole
fractions become important the law relating the number of solute molecules in the
mobile phase to that in the statlonary phase is no longer linear but can have almost
any form.

The variation in molar volumes illustrates the fact that the partial molar volumes
of the molecules of solute in the gas and liquid phases are very different. The molar
volume in the liquid phase can in fact be neglected compared with that in the gas
phase. It follows, therefore, that when a molecule is sorbed, it creates a void in the gas
phase and modifies the pressure profile. In the regions where molecules are mostly
sorbed, that is at the front of a peak, the pressure will tend to decrease, and conversely
it will increase at the back of a peak where the molecules desorb. This generates a
greater pressure gradient within the peak than exists outside it and, according to
Darcy’s law, the mobile phase velocity will also be greater within the peak.

There remains now to be described the most important phenomenon, the
occurrence of discontinuities. Discontinuities are a mathematical concept and they
may seem far removed from chemistry. A quick look to the asymmetry of peaks will

TENIN e

A2

Fig. 1. Introduction to discontinuities and shocks. Br, C1 and D1 are the chroma.tograms of tzhc
injection A1 at various i increasing column lengths; Bz, Cz, D2 and Az are similar. The asymmetry
effects are opposite in the two lines; C3 shows the effcct of 'diffusion on peak C2,
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clarify the position. First, what is a chromatogram? From the results presented by
recorders, the common picture of a chromatogram is similar to those on Fig. 1, 7.¢. a
line, almost a straight one, with peaks on it. However, a correct representation would
be to blacken the inner area of a peak, for a recorder really records the distance from
the base line (Fig. 1, D1). Peaks Ar and Az are injection peaks. These peaks are
eluted in the sequence A, B, C, D and show increased asymmetry of opposite sign on
the two lines. This is only a schematic view but a very important question arises:
what do the vertical lines mean, and do they have any physical sense? In fact, vertical
lines are not realistic since no recorder can have a zero response time. Besides, diffusion
intervenes and, for example, C2 will be turned into C3 owing to diffusion, pictured
for a Gaussian peak in A3. However, if these two phenomena, both of which tend to
lower the concentration gradient, are neglected, then the usual profiles such as C3
become similar to Cz with a vertical line. However, such lines may not even exist.
They are related only to the recorder. They are the unescapable trace of the movement
of the recorder pen from a stable position on the top of the peak to the base line,
another stable position. The solute concentration in the gas phase changes abruptly
from the value corresponding to the top of the peak, to zero, without taking any of
the intermediate values. There should not be anything between the top and the base
line, as in Bz, and this is:just what the mathematicians call a discontinuity. If use is
made of the suggestion that the inner area of a peak should be blackened, then the
vertical lines should be the border of the blackened areas, but they do not belong to
them.
Mathematics will not be considered here and- applications will be discussed.
It is shown in the next paragraph that if the discontinuities are dealt with using the
same mathematical methods as for the rest of the peak, pictures such as D2 are
obtained. Obviously this cannot be accepted, although it does not seem unnatural
‘to the'eye. In fact, if the blackened area is used, it can be seen that various areas will
-be blackened two or three times. The only solution found to this until now was to
draw anew discontinuity that would ensure the mass conservation of the folded areas2.
This is an ingenious way of solving the problem but it does not follow the principles
underlying the method of blackening the areas and is quite arbitrary. It seems better
to admit from the beginning the existence of such discontinuities and to admit that
they can have physical and dynamic properties. This concept is fairly new in chemis-
try, but in everyday life nobody doubts any more that sound waves and shocks exist.
All the vertical lines in Fig. 1 pertain to the same species as the supersonic ““bangs”.
It will now be shown how these shocks are included in the theory, and for this purpose
some mathematics must be used.

MATHEMATICAL METHODS

Until now, no mathematical method has been shown to be capable of dealing

-with the discontinuities as well as with the continuous part of the concentration

_profile. This continuous part can be dealt with using the usual functions, which is not

the case for discontinuities. The interaction of discontinuities and the contmuous part
-must also be studied.

¥ The dlSContmultles have already been studied extensively in spite of their fau'ly

col ltcated nature ‘This stems from the fact that a very simple method of creating a

[l
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stable discontinuity, that is a shock, is to achieve frontal analy51s (except in the case
of some solublhty isotherms). The reason will become clear in the next paragraph.
Thus the theory is so simple and so well known that it needs not be repeated here.

The continuous part, on the contrary, although fairly easy to define, requires
somewhat more sophisticated methods to deal with. The equations for the propagation
of a single solute by the carrier gas are:

+#) 2 2w =o
WD) 2~ X =0 .

where X is the mole fraction, # the mobile phase velocity, %’ the capacity ratio, ¢ the
time and z the abscissa along the column.

These are mere mass conservation equations, one for the solute and one for the
carrier gas, provided that we use the model defined in the previous sections?®.

The two sets of equations are partial differential equations and together they
build a system. Each of these equations is quasi-linear, as only first-order partial
derivatives appear and as their factors are functions of the functions themselves.
The system itself is hyperbolic. These properties allow a solution of the problem to be
sought by using the method of characteristics. In fact, this result is quite general and
is valid for any number of solutes. :

Characteristics are lines plotted in a two-dimensional space, buxlt on tlme and
‘abscissa in the column as coordinates. Therefore characteristics can be considered as
trajectories. On these lines, the partial differential equations turn into simple differen-
tial equations, allowing either simpler calculation or geometrical construction. It can
be shown? that there are as many families of characteristics as there are solutes, plus
one. This “‘supplementary’’ one is related to the carrier gas and in fact happens to be
the same in all systems. This last family is called gy, and correlates the various mobile
phase velocities along the column at a given moment. : ‘

The equations of the characteristics of the families 1 and 2 for a pure compound
are; :

dt =
o {-a-a; (T + 2 (1 — X)) =
| 0. @5 &R¥(z, £)

dz 7
02 [ dt 1+ A —X)
dX =0

The only restriction to the use of characteristics is that two characterlstlcs of
the sarne family may not intersect. When this occurs the solution can no longer be
found by this method. Then the physical model indicates that a new physwal phenom-
enon intervenes, 4.¢. a shock, as will be-discussed later.

There remains to be discussed the interaction of shocks or dlscontmultles w1th
the continuous' patt: of the: concentration -profiles. This -interaction is- necessanly
derived from the definition given earlier: on the one hand, the. discontinuity is defined
as the border of the continuous part, and on the other hand, it has its own laws of
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propagation. The equations show that the expressions of these two properties are not
identical; therefore some interaction must occur between the discontinuity and the
neighbouring continuous part. One way of expressing this is to assume that a dis-
continuity is defined by its neighbouring characteristics, ¢.¢. those corresponding
to the two values of the concentration which determine this discontinuity, but that
the discontinuity is propagated according to its own laws. Then, if characteristics do
not intersect the path of a discontinuity, this discontinuity cannot exist and it falls
into a continuous part. If characteristics do cut the path of the discontinuity, the dis-
continuity is stable and is a shock?®.

It will now be shown how the theory can account for the phenomena observed
in preparatwe scale GC.

APPLICATIONS OF THE THEORY

The first problem concerns the origin of discontinuities. It has been shown that
a discontinuity could be stable if the characteristics intersect its path, but this implies
that the discontinuity already existed, as in Fig. 1. However, discontinuities can
appear in the middle of a continuous part in the following way. It has been said that
characteristics of one family might not interfere one with the other. However, the
velocity: of a characteristic depends on the mole fraction attached to this line. There-
fore, neighbouring characteristics of a given family can either diverge or converge
but are very seldom parallel. When they converge, they will tend to cut each other.
“When this happens, the continuous solution is no longer valid and a discontinuity is
then ‘created. The mathematics show that a characteristic is similar to a zero dis-

‘ contihuity and therefore the interaction of two characteristics can be dealt with ‘in
‘the same way as for that of a characteristic and a discontinuity; a dlscontmulty
created in that way will tend to be stable and to grow.

- Other applications can be made from the fact that the slopes of characteristics
depend on the mole fraction, and a typical example is the description of the elution
of a single peak and of the build-up of its asymmetry. This is plotted in Fig. 2, where
it is assumed that the slope of the characteristics increases with increasing mole

fraction. Also, it can be derived mathematically, and was shown in the two sets of
" equations, that for a single compound the mole Jfraction is constant on any given
characteristic. The original injection peak is O. It is rectangular and has two dis-
continuities, OO’ and O’’O’’, The second discontinuity, OO’, is not stable and
collapses into a set of characteristics, so only O"’O’” is a shock. To obtain the elution
of the peak, the path of the shock and the characteristics must be drawn. Between
O and B, the characteristics issued from O’O” intersect the shock, and, all correspond.
ing to the same concentration, allow the shock to remain of constant height. What
occurs between O and B is exactly what occurs in frontal analysis and explains how
the initial discontinuity can be stable. However, after B this is no longer valid and the
characteristics intersecting the shock have a lower mole fraction. It follows that the
height of the shock decreases as well as 1ts veloclty, as can be shown frorn the equa-

t1ons° i
Thls isin fact natural ‘as, owmg to the charactenstlc OABC (dotted lme) the
peak broadens and therefore; if mass is to be conserved, the peak height must decrease.

= The chroma,tograms in O,’A, B and C are the same as chromatograms Az, Bx, Cx
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Fig, 2. Elution of a single peak. The injection peak is in O, There it turns into A then B and C.
< is the mole fraction, z the abscissa, ¢ the time. .

and Dr in Fig. 1 and this shows how characteristics account for the build-up of the
peak asymmetry.

If some physical measurements are to be made, it is best to measure data that
do not change during elution. This means that it will be easier to measure .data
represented by straight lines in Fig. 2. However, there are few straight lines there
that one can rely on, The path of the shock cannot be used. The characteristics could
be used, but as their slopes depend on the mole fraction, one must be sure of which
characteristic is being studied.

~ In the end, the most reliable line is OABC that is, the charactenstlc of zero
mole fraction. This is exactly what KEULEMANS1 discovered experimentally when he
defined the initial and final retention volumes, based on this characteristic for the two
possible maximum opposite asymmetries and not on the peak top.

Other features can be derived, for example for the separation of two solutes.
Separation of one solute from a mixture means, in GC, that on the chromatogram a
zone can be found where only this solute is mixed with the carrier gas. Such a zone
can be found even though the separation is not completed, in which case it will be
located next to a zone where the two solutes are mixed with the carrier gas. The
concentrations of the solutes can vary continuously or discontinuously from one zone
to the other, across the boundary. The theory of finite concentration GC:indicates®
that the paths of these boundaries are boundary lines that are shocks if the boundary
is discontinuous or a characteristic if it is continuous. Furthermore, it indicates that
these boundary lines are issued from the limits of the boundary: COﬂdlthn ‘at the
column inlet, that is, the limits of the injection plug, and that there are as many lines
issued as there are solutes. An example of such a process is shown in Fig. 3 for two
solutes. The injection lasts from S1 to Sz in the (2,%) plane at the inlet of the column
(2=0). The boundary lines issued from:S1 are C3 and C4, those from Sz are C1 and Cz.
As'was just defined, these four lines define five domains, 2, in each of which the
number of solutes is constant. In &, lies the mixture' of the two components and
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Fig. 3. Separation of a mixture of two compounds, ¢ is the time, # the abscissa, C; are boundaries
(either shocks or characteristics) i are the various domains accountmg for the separation. Q marks
the end of the separatlon process.

carrier gas, in 2; and @, only carrier gas can be found, and in 2, and 2, the slower
and faster compounds occur, respectwely 2, is bound by C2 and C3, and therefore
when these lines intersect no further mixing can take place. Point Q thus marks the
completion of the separation process.

Naturally, w1th the use of computers, one can obtain much more data on this
process.

CONCLUSION

The above description is only a summary of the theory and application of the
model. However, it includes the two main points of it: a new mathematical method
(characteristics)- and a new concept (shocks). It is not argued that we were the first
to thmk of these, but we feel that we are the ﬁrst to 1rnplement them, at any rate for
GC ‘ aE

The charactenstlcs are essent1a1 as they combme all the prev1ous trlals for the
descnptlon of the propagation of continuous concentration profiles at finite concentra-
tion. The shocks are essential in that without them no correct description of the elu-
tionofa peak can be achieved in the general case. Also, they allow frontal and elution
chromatography to be combined. It seems that at present much progress is being

made using the two: concepts and ‘it is hoped that they will allow a slgnlﬁcant step
in the: understa,ndmg of cliromatography at finite concentration. : o
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