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SUMMARY 
. 

A model for preparative scale gas chromatography is derived, first by choosing 
only a few of_.the many phenomena involved in such a process, then by using a new 
description”of the process itself as well as a better mathematical method to account 
for it. The new description of the phenomena makes use of discontinuities of the solute 
mole fraction which implies that discontinuous as well as continhous equations can be 
written. Use of the method of characteristics for the continuous equations allows the 
two types of solution to be combined into a very general description of the movement 
of solutes down a chromatographic column. Examples of application are given for the 
cases of one and two solutes. 

INTRODUCTION 

Much theoretical work has been published about chromatography. Most of the 
literature dealt with phenomena involved in a chromatographic process whereas a 
few theories gave a complete model for such a process. Only the latter will he con- 
sidered here, and a short review of them is given in Table I. As shown by Table I, the 
theories of gas chromatography (GC) appeared later because GC itself is a relatively 
young technique. Before presenting a new model for GC at finite concentration, it is 
necessary to survey the previous ones so that the essential features of the model can be 
pointed out. 

The first theories of chromatography, which were derived for liquid chromsto- 

TABLE I 

THE VARIOUS GENLRAL THJ3ORIES OF CHROMATOGRAPHY 

Year Autlror Main mfeyence 

Liquid; finite concn, 
Ion cxchsngc; finite concn. 
Gas; midyticd 
Gas; ,linito kmctl’, 
Liquid ;, finite concn. 
Ion exchange; finite qoncn. 
Gas; finitc’concn. 

‘, ,: 

1940s 
1940s 
1950s 
1955 
1gGos 

1970 
1970 

WILSON; DEVATJLT I. 2 
GLUECI<AUP 3. 
GIDDINGS 
BOSANQU'ET AND ~~ORGAN 

4 

~~ACHINSICII .56 
KLEIN AND.HI+W~RICH; TONDEUR 7.8 ; 
GUIOCHON AND JACOB 9 

'. 
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graphy, are based on partial differential equations ,192. These theories, which presented 
a complete set of hypotheses allowing the basic equations to be derived, accounted for 
the finite concentration and partly for the occurrence of very steep slopes on one side 
of a peaks. Further steps towards the greater use of mathematics were made in the 
case of liquid chromatography by RACWINSKII~, who introduced better mathematical 
methods. However, GC was discovered, and made use of much smaller amounts of 
solute so that it was soon used under analytical conditions at almost infinite dilution. 
It is therefore not surprising that the models devised at that time were statistical4 
and no longer used partial derivatives. However, the theories devised by GIDDINGS” 
in the rggos were still based on liquid dynamics. Immediately afterwards, attempts 
to deal with finite concentrations in GC were made for example by BOSANQUET AND 
MORGAN~. However, they were very limited in scope. In fact, .the methods used in 
these models were all very similar to those used by DEVAULT~, and all the papers in 
the literature referred to his work. However, if further steps were to be taken, it was 
obvious that something had to be added. This could be done using more suitable 
mathematical methods for both liquid and gas chromatography. It could also mean 
#adding new phenomena so that the models would be closer to reality. These features 
can be found in the two latest models to be published, that of TONDEUR* and that of 
GUIOCHON AND JACOB D. This last model is presented here, first the phenomena, then 
the mathematical method, and finally th.e application of the model. 

THE MAIN PWENOMENA 

When one speaks of preparative scale chromatography, one does not always 
indicate exactly which model has been chosen or refer to it correctly. A clear basis 
will be given here for the model presented, so that an easy comparison can be made 
with others. The. main phenomena involved are shown in Table II. The first group 
of phenomena can be neglected for various reason9 of which the essential ones are 
the following. 

TABLE II 

THE PHENOMENA THAT INTERVENE IN FINITE CONCENTRATION GAS CHROMATOGRAPHY 

Ivrcluded in’ model ExcEuded from mode2 

Isotherm 

Molar volume variation 

Discontinuitios 

Local prcssurc 
Temperature 
Diffusion 
Flow 
Column 

The local pressure influences the Row of the mobile phase, but if this factor was 
taken into account, the resulting equations would be far too complicated. It is indeed 
a very important phenomenon and should actually be dealt with at finite concentra- 
tion to be able,to obtain physical data for the solutes. However, our present purpose 
is to achieve a fairly general model and if the pressure is included this aim will no 
longer be possible; whereas results in good agreement with the experimental ones are 
obtained with models havi.ng this feature. Besides, if the theories of GC are considered 
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A MODEL FOR PREPARATIVE GC 21 

in detail, one realizes that very few of them fully include the effect of pressure. For 
example, in the statisti.& theory of GIDDLNGS~, the influence of decompression on the 
mobile phase velocity is not included although it modifies the statistical distribution 
of the solute. 

Temperature and diffusion can be considered as minor phenomena as far as 
finite concentrations are concerned, as will be seen later. Finally, only a piston-flow 
or a mono-dimensional column will be considered, 

Thus there remain only the three basic characteristic features of our model of 
chromatography at high concentration : the solubility isotherm, the differences in the 
molar volumes of the solute, and the occurrence of concentration discontinuities. 

The solubility isotherm relates the concentration between the two phases of a 
solute at equilibrium between the mobile and the stationary phases, When the mole 
fractions become important, the law relating the number of solute molecules in the 
mobile phase to that in the stationary phase is no longer linear but can have almost 
any form. 

The variation in molar volumes illustrates the fact that the partial molar volumes 
of the molecules of solute in the gas and liquid phases are very different. The molar 
volume in the liquid phase can in fact be neglected compared with that in the gas 
phase. It follows, therefore, that when a molecule is sorbed, it creates a void in the gas 
phase and modifies the pressure profile. In the regions where molecules are mostly 
sorbed, that is at the front of a peak, the pressure will tend to decrease, and conversely 
it will increase at the back of a peak where the molecules desorb, This generates a 
greater pressure gradient within the peak than exists outside it and, ‘according to 
Darcy’s law, the mobile phase velocity will also be greater within the peak. 

There remains’ now to be described ,the most important phenomenon, the 
occurrence of discontinuities. Discontinuities are a mathematical concept and they 
may seem far removed from chemistry. A quick look to the asymmetry of peaks will 

Ai Bl Cl 61 

J-l /_/IA’ 
A2 82 c2 32 

JYig. I. Introduction to cliscontinuitjcs, and shocks. ,Bi,, Cr. an,d DI are. the chromstograms of the 
fnjection AI at various increasing colump lengths; R?, C2, ID.2 and AZ are similar. The asymmetry 
offbcts arc’bppositd iri the ttio lib; C3 shows the’cffcdt of’diffusion on $onk C2,’ .’ “’ “. 
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clarify the position. First, what is a chromatogram ? From the results presented by 
recorders, the common picture of a chromatogram is similar to those on Pig. I, i.e. a 

line, almost a straight one, with peaks on it. However, a correct representation would 
be to blacken the inner area of a peak, for a recorder really records the distance from 
the base line (Fig. I, DI). Peaks AI and A2 are injection peaks, These peaks are 
eluted in the sequence A, B, C, D and show increased asymmetry of opposite sign on 
the two lines. This is only a schematic view but a very important question arises: 
what do the vertical lines mean, and do they have any physical sense? In fact, vertical 
lines are not realistic since no recorder can have a zero response time, Besides, diffusion 
intervenes and, for example, C2 will be turned into C3 owing to diffusion, pictured 
for a Gaussian peak in Ag., However, if these two phenomena, both of which tend to 
lower the concentration gradient, are neglected, then the usual profiles such as C3 
become similar to C2 with a vertical line. However, such lines may not even exist. 
They are related only to the recorder. They are the unescapable trace of the movement 
of the recorder pen from a stable position on the top of the peak to the basesline, 
another stable position. The solute concentration in the gas phase changes abruptly 
from the value corresponding to the top of the peak, to zero, without taking any of 
the intermediate values. There should not be anything between the top and the base 
line, as in R2, and this is,just what the mathematicians call a discontinuity. If use is 
made,of, the suggestion that the inner area of a peak should be blackened, then the 
vertical lines should be the border of the blackened areas, but they do not belong to 
them. 

Mathematics will not be considered here and applications will be discussed. 
It is shown in the,next paragraph that if the discontinuities are dealt with using the 
same mathematical methods as for the rest of the peak, pictures such as D2 are 
obtained. Obviously this cannot be accepted, although it d.oes not seem unnatural 
to the’ eye. In fact, if the blackened area is used, it can be seen that various areas will 
be blackened two or three times. The only solution found to this until now was to 
draw anew discontinuity that would ensure the mass conservation of the folded area@. 
This is an ingenious way of solving the problem but it does not follow the principles 
underlying the method of blackening the areas and is quite arbitrary. It seems better 
to admit .from the beginning the existence of, such discontinuities and to admit that 
they can have physical and dynamic properties. This concept is fairly new in chemis- 
try, but in everyday life nobody doubts any more that sound waves and shocks exist. 
All the vertical lines in Fig. L pertain to the same species as the supersonic “bangs”. 
It will now be shown how these shocks are included in the theory, and for this purpose 
some mathematics must be used. 

MATHEMATICAL METHODS 

Until’now, no mathematical method has been shown to be capable,of dealing 
with the discontinuities as well as with the continuous part of the concentration 
profile. This continuous part can be dealt with using the usual functions, which is not 
‘the case for discontinuities, The interaction of discontinuities and the continuous part 
must also be studied. 
?;+ ‘!, :’ $li$, discdnti$uifies have already been studied extensively in spite of their-fairly ‘.I 
cc&pIicated nature. This,stems from the fact that a very siniple method of creating a 
,’ ,, ,. 
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stable discontinuity, that is a shock, is to achieve frontal analysis (except in the case 
of some solubility isotherms). The reason will become clear in the next paragraph. 
Thus the theory is so simple and so well known that it needs not be repeated here. 

The continuous part, on the contrary, although fairly easy to define, requires 
somewhat more sophisticated methods to deal with. The equations for the propagation 
of a, single solute by the carrier gas are: 

(1 + A?‘) ax a ~+&=4=0 

a(1 - X) 
at + 2 ((I - X)%4) = 0 

where X is the mole fraction, zt the mobile phase velocity, k’ the capacity ratio, t the 
time and a the abscissa along the column. 

These are mere mass conservation equations, one for the solute and one for the 
carrier gas, provided that we use the model defined in the previous sectionsO. 

The two sets of equations are, partial differential equations and together they 
build a system. Each of these equations is quasi-linear, as only first-order partial 
derivatives appear and as their factors are functions of the. functions themselves. 
The system itself is hyperbolic. These properties allow a solution of the problem to be 
sought by using the method of characteristics. In fact, this result is quite general and 
is valid for any number of solutes. 

Characteristics are lines plotted in a two-dimensional space, built on time and 
abscissa in the column as coordinates, ,Therefore characteristics can be considered as 
trajectories, On these lines, the partial differential equations turn into simple differen- 
tial equations, allowing either simpler calculation or geometrical construction. It can 
be shown0 that there are as many families of characteristics as there are solutes, plus 
one. This “supplementary” one is related to the carrier gas and in fact happens to be 
the same in all systems. This last family is called el, and correlates the various mobile 
phase velocities along the column at a given moment. 

The equations of the characteristics of the families r and z for a pure compound 
are : 

f dt = 0 

e1 I g (u(r + lz’(1 - A-))) = 0 

Q2 dt= 
( 

dz 21 
I + A?‘(1 - X) 

dX = o 

The only restriction to the use of characteristics is that two characteristics of 
the same family may not intersect. When this occurs the solution can no longer be 
found bythis method. Then the physical model indicates that a new physical phenom- 
enon ,intervenes, i.e. a shock, as will be,discussed .latet. ‘,., ,., 

There remains to be discussed the interaction of shocks or discontinuities.with 
the continuous :,pai!t : of the, concentration profiles, ,This ,interaction is necessarily 
derived ‘from the idef&&ioti given earlier: ori the,one hand,. the,discontinuity is defined, 
as the border, of, the:co&inuous part’; and on the, other hind, ,it ,has itsbwn laws of . . 
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propagation. The equations show that the expressions of these two properties are not 
identical; therefore some interaction must occur between the discontinuity and the 
neighbouring continuous part. One way of expressing this is to assume that a dis- 
continuity is defined by its neighbouring characteristics, i.e. those corresponding 
to the two values of the concentration which determine this discontinuity, but that 
the discontinuity is propagated according to its own laws. Then, if characteristics do 
not intersect the path of a discontinuity, this discontinuity cannot exist and it falls 
into a continuous part. If characteristics do cut the path of the discontinuity, the dis- 
continuity is stable and is a shockD. 

It will now be shown how the theory can account for the phenomena observed 
in preparative scale GC. 

APPLICATIONS OF THE TNEORY 

The first problem concerns the origin of discontinuities, It has been shown that 
a discontinuity could be stable if the characteristics intersect its path, but this implies 
that the discontinuity already existed, as in Fig. 1. However, discontinuities can 
appear in the middle, of a continuous part in the following way. It has been said that 
characteristics of one family might not interfere one with the other. However, the 
velocity: of a, characteristic depends on the mole fraction attached to this line. There- 
fore, neighbouring characteristics of a given family can either diverge or converge 
but are very seldom parallel. When they converge, they w’ill tend to cut each other. 
When this happens, the continuous solution, is no longer valid and a discontinuity is 
thencreated; The mathematics show that’ a characteristic is similar to a zero dis- 
continuity and therefore the interaction of two characteristics can be dealt with ‘in 
the. same:,way, as for that. of a characteristic and a discontinuity; a discontinuity 
created in that way will. tend to be stable and to grow. 
. . Other :applications can be made from the fact that the slopes of characteristics 

depend on the mole fraction, and a typical example is the description of the elution 
of a single peak and of the build-up of,its asymmetry., This is plotted in Fig. 2, where 
it is assumed that the slope of the characteristics increases with increasing mole 
fraction. Also, ,it can be derived mathematically, and was shown in the two sets of 
equations, that for a single compound the mole ,fraction is constant on any given 
characteristic. The original injection peak is 0. It is rectangular and has two dis- 
continuities, 00’ and O”0”‘. The second discontinuity, 00’, is not stable and 
collapses into a set of characteristics, so only O”0”’ is a shock. To obtain the elution 
of the peak, ,the path of the shock and the characteristics must be drawn.’ Between 
0 and B, the characteristics issued from 0’0” intersect the shock, and, all correspond8 
ing to the same concentration, allow the shock to remain of constant height. What 
occurs between 0 and B is exactly what occurs in frontal analysis and explains how 
tlie initial discontinuity can be stable. However, after I3 this is no.longer valid and the 
characteristics intersecting the ,shock, have a lower mole fraction. It follows that! the 
height of the shock decreases as well as its velocity, as can be shown,from,the equa- 
tiijns0, I,,; ;, j i ;c, ; ,: ,:, . , 5 .‘. 

i ,‘< l:,:l:This,is’ in’fact, natural;,&, owing to the characteristic O&C ,(dottedXne), the ,. .j, 

JCjcak broadens andRhdreforei if mass is to be conserved,$he pcak~height ‘must-decrease. 
,: b ! :,:*The chromatograms,in 0, A, R and C are the,same as chromatograms AT, BL; CI 

J. C~hvomizt~g++;,:65 (rgp) .rg-zj 
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Fig. 2. Elution of a single peak. The injection peak is in 0. 
X is the molt fraction, z the abscissa, 1 the time. 

Thcrc it turns into A then I3 and C. 

and 331 in Fig. I and this shows how characteristics account for the build-up of the 
peak asymmetry. 

If some physical measurements are to be made, it is best to measure data that 
do not change during elution. This means that it will be easier to measure .data 
represented by straight lines in Fig. 2. However, there are few straight lines there 
that one can rely on, The path of the shock cannot be used. The characteristics could 
be used, but as their slopes depend on the mole fraction, one must be sure of which 
characteristic. is being s,tudied. 

In. the end, the most reliable line is OABC, that is, the characteristic of zero 
mole fraction. This is exactly what KEULEMANS 10 discovered experimentally when he 
defined the initial and final retention volumes, based on. this characteristic for the two 
possible maximum opposite asymmetries and not on the peak top. 

Other features can be derived, for example for the separation of two solutes. 
Separation of one solute from a mixture means, in GC, that on the chromatogram a 
zone can be’ found where only this solute is mixed with the carrier gas. Such a zone 
can be found even though the separation is not completed, in which case it will be 
located next to a zone where the two solutes are mixed with the carrier. gas. The 
concentrations of the solutes can vary continuously.or discontinuously from one zone 
to the other, ‘across the, boundary. The theory of finite concentration GC indicate@ 
that the paths of these boundaries are boundary lines that are shocks if the.boundary 
is discontinuous or a characteristic if it is continuous. Furthermore, it indicates that 
these boundary lines. are issued’ from the limits of ,the boundary: condition”at the 
column inlet, that is, the limits of.the injection.plug, and that there are as mdny lines 
issued as there are solutes. ,An example of such a process is shown in Fig. 3 for two 
solutes. ,The injection lasts from Sjc to S2 in the (zJ!) plane at ‘the inlet of .the column 
(z=o). The boundarylines issued from?31 are.Q and Cq,,those from SZ are CI and CZ. 
As ‘was, just defined,, these four lines define, ‘five. domains; JBij in, each of ,whichthe 
number of solutes is’constant. In 9s lies ,the,.mixture, of the two components and 

J. Cbvomatogr., 65 Wi.74 x9-27 
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Fig. ,3. Separation of a mixture of two compounds, t is the time, z the abscissa, Ci arc boundaries 
(either shocks’or charactci-istics) i are the various domains accounting for the separation. Q marks 
the end of the separation process. 

, 

carrier gas, in a1 and 91~ only carrier gas can be found, and in 9, and B,, the slower 
and faster compounds occur, respectively. Ba is bound by Cz and C3, and therefore 
when these lines intersect no further,mixing can take place. Point Q thus m.arks the 
completion of the separation process. 

Naturally; with t,he use of computers, one can obtain much more data on this 
process. ,, 

.’ 

‘. 

CONCLUSlON 

: The above description is only a summary of the theory and application of the 
model., However, it,includes ,the two main points of it: a new mathematical method 
(characferistics)~ and a news concept (shocks). It is not argued that we were the first 
to think,of these, but we feel that we are. the first to implement them, at any rate for 
CC.,:::: ,,.: II’.‘;;’ .‘,,(_,, : ,, ,), :,,, 

‘. ‘8 The ,characteristics are essential as they combine all the previous trials for the 
description of the propagation of continuous concentration profiles at finite concentra- 
tion; The shocks;are essential in Shat without them no correct description of the elu- 
tion of a peak,can be achieved in the generalzase. Also, they allow frontal and elution 
chromato&,aphy~to be combined. ?[t :seems ,that at present ,much .progress is being 
made : usii@he two: concepts and :it, is. hoped that they will- allow a significant step 
in jthelunderstandmg of chromatography at finite concentration. . 

J;Chvo&Cogv., 6'5 (ig7i) 19-27 
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